Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trop Med Infect Dis ; 9(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38251217

RESUMEN

This study evaluated the impact of combining house screens with long-lasting insecticidal nets (LLINs) on mosquito host-seeking, resting, and biting behavior. Intervention houses received house screens and LLINs, while control houses received only LLINs. Centre for Disease Control light traps, pyrethrum spray collections and human landing catches were used to assess the densities of indoor and outdoor host-seeking, indoor resting, and biting behavior of malaria vectors in 15 sentinel houses per study arm per sampling method. The protective efficacy of screens and LLINs was estimated through entomological inoculation rates (EIRs). There were 68% fewer indoor host-seeking Anopheles funestus (RR = 0.32, 95% CI 0.20-0.51, p < 0.05) and 63% fewer An. arabiensis (RR = 0.37, 95% CI 0.22-0.61, p < 0.05) in screened houses than unscreened houses. There was a significantly higher indoor biting rate for unscreened houses (6.75 bites/person/h [b/p/h]) than for screened houses (0 b/p/h) (χ2 = 6.67, df = 1, p < 0.05). The estimated indoor EIR in unscreened houses was 2.91 infectious bites/person/six months, higher than that in screened houses (1.88 infectious bites/person/six months). Closing eaves and screening doors and windows has the potential to reduce indoor densities of malaria vectors and malaria transmission.

2.
Malar J ; 22(1): 95, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927373

RESUMEN

BACKGROUND: The primary malaria vector-control interventions, indoor residual spraying and long-lasting insecticidal nets, are effective against indoor biting and resting mosquito species. Consequently, outdoor biting and resting malaria vectors might elude the primary interventions and sustain malaria transmission. Varied vector biting and resting behaviour calls for robust entomological surveillance. This study investigated the bionomics of malaria vectors in rural south-east Zambia, focusing on species composition, their resting and host-seeking behaviour and sporozoite infection rates. METHODS: The study was conducted in Nyimba District, Zambia. Randomly selected households served as sentinel houses for monthly collection of mosquitoes indoors using CDC-light traps (CDC-LTs) and pyrethrum spray catches (PSC), and outdoors using only CDC-LTs for 12 months. Mosquitoes were identified using morphological taxonomic keys. Specimens belonging to the Anopheles gambiae complex and Anopheles funestus group were further identified using molecular techniques. Plasmodium falciparum sporozoite infection was determined using sandwich enzyme-linked immunosorbent assays. RESULTS: From 304 indoor and 257 outdoor light trap-nights and 420 resting collection, 1409 female Anopheles species mosquitoes were collected and identified morphologically; An. funestus (n = 613; 43.5%), An. gambiae sensu lato (s.l.)(n = 293; 20.8%), Anopheles pretoriensis (n = 282; 20.0%), Anopheles maculipalpis (n = 130; 9.2%), Anopheles rufipes (n = 55; 3.9%), Anopheles coustani s.l. (n = 33; 2.3%), and Anopheles squamosus (n = 3, 0.2%). Anopheles funestus sensu stricto (s.s.) (n = 144; 91.1%) and Anopheles arabiensis (n = 77; 77.0%) were the dominant species within the An. funestus group and An. gambiae complex, respectively. Overall, outdoor CDC-LTs captured more Anopheles mosquitoes (mean = 2.25, 95% CI 1.22-3,28) than indoor CDC-LTs (mean = 2.13, 95% CI 1.54-2.73). Fewer resting mosquitoes were collected with PSC (mean = 0.44, 95% CI 0.24-0.63). Sporozoite infectivity rates for An. funestus, An. arabiensis and An. rufipes were 2.5%, 0.57% and 9.1%, respectively. Indoor entomological inoculation rates (EIRs) for An. funestus s.s, An. arabiensis and An. rufipes were estimated at 4.44, 1.15 and 1.20 infectious bites/person/year respectively. Outdoor EIRs for An. funestus s.s. and An. rufipes at 7.19 and 4.31 infectious bites/person/year, respectively. CONCLUSION: The findings of this study suggest that An. rufipes may play an important role in malaria transmission alongside An. funestus s.s. and An. arabiensis in the study location.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria , Piretrinas , Animales , Humanos , Femenino , Zambia , Mosquitos Vectores , Conducta Alimentaria , Malaria Falciparum/epidemiología , Esporozoítos
3.
Parasit Vectors ; 15(1): 213, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710443

RESUMEN

BACKGROUND: Agricultural pesticides may exert strong selection pressures on malaria vectors during the aquatic life stages and may contribute to resistance in adult mosquitoes. This could reduce the performance of key vector control interventions such as indoor-residual spraying and insecticide-treated nets. The aim of this study was to investigate effects of agrochemicals on susceptibility and fitness of the malaria vectors across farming areas in Tanzania. METHODS: An exploratory mixed-methods study was conducted to assess pesticide use in four villages (V1-V4) in south-eastern Tanzania. Anopheles gambiae (s.l.) larvae were collected from agricultural fields in the same villages and their emergent adults examined for insecticide susceptibility, egg-laying and wing lengths (as proxy for body size). These tests were repeated using two groups of laboratory-reared An. arabiensis, one of which was pre-exposed for 48 h to sub-lethal aquatic doses of agricultural pesticides found in the villages. RESULTS: Farmers lacked awareness about the linkages between the public health and agriculture sectors but were interested in being more informed. Agrochemical usage was reported as extensive in V1, V2 and V3 but minimal in V4. Similarly, mosquitoes from V1 to V3 but not V4 were resistant to pyrethroids and either pirimiphos-methyl or bendiocarb, or both. Adding the synergist piperonyl butoxide restored potency of the pyrethroids. Pre-exposure of laboratory-reared mosquitoes to pesticides during aquatic stages did not affect insecticide susceptibility in emergent adults of the same filial generation. There was also no effect on fecundity, except after pre-exposure to organophosphates, which were associated with fewer eggs and smaller mosquitoes. Wild mosquitoes were smaller than laboratory-reared ones, but fecundity was similar. CONCLUSIONS: Safeguarding the potential of insecticide-based interventions requires improved understanding of how agricultural pesticides influence important life cycle processes and transmission potential of mosquito vectors. In this study, susceptibility of mosquitoes to public health insecticides was lower in villages reporting frequent use of pesticides compared to villages with little or no pesticide use. Variations in the fitness parameters, fecundity and wing length marginally reflected the differences in exposure to agrochemicals and should be investigated further. Pesticide use may exert additional life cycle constraints on mosquito vectors, but this likely occurs after multi-generational exposures.


Asunto(s)
Anopheles , Insecticidas , Malaria , Plaguicidas , Piretrinas , Agricultura , Animales , Resistencia a los Insecticidas , Insecticidas/farmacología , Malaria/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores , Plaguicidas/farmacología , Piretrinas/farmacología , Tanzanía
4.
Glob Public Health ; 17(8): 1507-1524, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34161201

RESUMEN

Community health workers (CHWs) are framed as the link between communities and the formal health system. CHWs must establish trusting relationships with the community and with the broader health service. How to find the optimal balance between the various strands of work for CHWs, and how to formalise this, has been the focus of different studies. We performed an extensive documentary analysis of federal legislation in Brazil to understand the institutionalisation of the CHW workforce in Brazil over the last 3 decades. The paper offers three contributions to the literature: the development and application of an analytical framework to consider the institutionalisation process of CHWs; a historical analysis of the professional institutionalisation of CHW in Brazil; and the identification of the paradoxes that such institutionalisation faces: firstly, institutionalisation focused on improving CHW remuneration created difficulties in hiring and paying these professionals; when CHW are incorporated within state bureaucracy they start to lose their autonomy as community agents; and that the effectiveness of CHW programmes depends on the improvement of clinical services in the most deprived areas.


Asunto(s)
Agentes Comunitarios de Salud , Remuneración , Brasil , Atención a la Salud , Humanos , Investigación Cualitativa
5.
Malar J ; 16(1): 439, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084560

RESUMEN

BACKGROUND: Malaria vector control in Tanzania is based on use of long-lasting insecticide treated nets (LLINs) and indoor residual spraying (IRS), which both rely on the use of chemical insecticides. The effectiveness of these control tools is endangered by the development of insecticide resistance in the major malaria vectors. This study was carried out to monitor the susceptibility status of major malaria vectors to insecticides used for IRS and LLINs in mainland Tanzania. METHODS: Mosquito larvae were collected in 20 sites of Tanzania mainland in 2015. Phenotypic resistance was determined using standard WHO susceptibility tests. Molecular assay were used to determine distribution of Anopheles gambiae sub-species. A microplate assay approach was used for identifying enzyme levels on single mosquitoes from each sites compared with a susceptible reference strain, An. gambiae sensu stricto (s.s.) Kisumu strain. RESULTS: Anopheles arabiensis was the dominant malaria specie in the country, accounting for 52% of the sibling species identified, while An. gambiae s.s. represented 48%. In Arumeru site, the dominant species was An. arabiensis, which was resistant to both pyrethroids (permethrin and deltamethrin), and pirimiphos-methyl, and had significant elevated levels of GSTs, non-specific esterases, and oxidase enzymes. An. arabiensis was also a dominant species in Kilombero and Kondoa sites, both were resistant to permethrin and deltamethrin with significant activity levels of oxidase enzymes. Resistance to bendiocarb was recorded in Ngara site where specie composition is evenly distributed between An. gambiae s.s. and An.arabiensis. Also bendiocarb resistance was recorded in Mbozi site, where An. gambiae s.s. is the dominant species. CONCLUSIONS: Overall, this study confirmed resistance to all four insecticide classes in An. gambiae sensu lato in selected locations in Tanzania. Results are discussed in relation to resistance mechanisms and the optimization of resistance management strategies.


Asunto(s)
Anopheles/efectos de los fármacos , Resistencia a Múltiples Medicamentos , Resistencia a los Insecticidas , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores/efectos de los fármacos , Animales , Femenino , Tanzanía
6.
Lancet Planet Health ; 1(5): e188-e199, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29851640

RESUMEN

BACKGROUND: The population of sub-Saharan Africa is currently estimated to be 1245 million and is expected to quadruple by the end of the century, necessitating the building of millions of homes. Malaria remains a substantial problem in this region and efforts to minimise transmission should be considered in future house planning. We studied how building elements, which have been successfully employed in southeast Asia to prevent mosquitos from entering and cooling the house, could be integrated in a more sustainable house design in rural northeastern Tanzania, Africa, to decrease mosquito density and regulate indoor climate. METHODS: In this field study, six prototype houses of southeast Asian design were built in in the village of Magoda in Muheza District, Tanga Region, Tanzania, and compared with modified and unmodified, traditional, sub-Saharan African houses. Prototype houses were built with walls made of lightweight permeable materials (bamboo, shade net, or timber) with bedrooms elevated from the ground and with screened windows. Modified and unmodified traditional African houses, wattle-daub or mud-block constructions, built on the ground with poor ventilation served as controls. In the modified houses, major structural problems such as leaking roofs were repaired, windows screened, open eaves blocked with bricks and mortar, cement floors repaired or constructed, and rain gutters and a tank for water storage added. Prototype houses were randomly allocated to village households through a free, fair, and transparent lottery. The lottery tickets were deposited in a bucket made of transparent plastic. Each participant could draw one ticket. Hourly measurements of indoor temperature and humidity were recorded in all study houses with data loggers and mosquitoes were collected indoors and outdoors using Furvela tent traps and were identified with standard taxonomic keys. Mosquitoes of the Anopheles gambiae complex were identified to species using PCR. Attitudes towards the new house design were assessed 6-9 months after the residents moved into their new or modified homes through 15 in-depth interviews with household heads of the new houses and five focus group discussions including neighbours of each group of prototype housing. FINDINGS: Between July, 2014, and July, 2015, six prototype houses were constructed; one single and one double storey building with each of the following claddings: bamboo, shade net, and timber. The overall reduction of all mosquitoes caught was highest in the double-storey buildings (96%; 95% CI 92-98) followed closely by the reduction found in single-storey buildings (77%; 72-82) and lowest in the modified reference houses (43%; 36-50) and unmodified reference houses (23%; 18-29). The indoor temperature in the new design houses was 2·3°C (95% CI 2·2-2·4) cooler than in the reference houses. While both single and two-storey buildings provided a cooler indoor climate than did traditional housing, two-story buildings provided the biggest reduction in mosquito densities (96%, 95% CI 89-100). Seven people who moved into the prototype houses and seven of their neighbours (three of whom had their houses modified) participated in in-depth interviews. After living in their new prototype houses for 6-9 months, residents expressed satisfaction with the new design, especially the second-storey sleeping area because of the privacy and security of upstairs bedrooms. INTERPRETATION: The new design houses had fewer mosquitoes and were cooler than modified and unmodified traditional homes. New house designs are an underused intervention and hold promise to reduce malaria transmission in sub-Saharan Africa and keep areas malaria-free after elimination. FUNDING: Ruth W Jensens Foundation, Copenhagen and Hanako Foundation, Singapore.

7.
Malar J ; 13: 28, 2014 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-24460952

RESUMEN

BACKGROUND: Resistance of mosquitoes to insecticides is a growing concern in Africa. Since only a few insecticides are used for public health and limited development of new molecules is expected in the next decade, maintaining the efficacy of control programmes mostly relies on resistance management strategies. Developing such strategies requires a deep understanding of factors influencing resistance together with characterizing the mechanisms involved. Among factors likely to influence insecticide resistance in mosquitoes, agriculture and urbanization have been implicated but rarely studied in detail. The present study aimed at comparing insecticide resistance levels and associated mechanisms across multiple Anopheles gambiae sensu lato populations from different environments. METHODS: Nine populations were sampled in three areas of Tanzania showing contrasting agriculture activity, urbanization and usage of insecticides for vector control. Insecticide resistance levels were measured in larvae and adults through bioassays with deltamethrin, DDT and bendiocarb. The distribution of An. gambiae sub-species and pyrethroid target-site mutations (kdr) were investigated using molecular assays. A microarray approach was used for identifying transcription level variations associated to different environments and insecticide resistance. RESULTS: Elevated resistance levels to deltamethrin and DDT were identified in agriculture and urban areas as compared to the susceptible strain Kisumu. A significant correlation was found between adult deltamethrin resistance and agriculture activity. The subspecies Anopheles arabiensis was predominant with only few An. gambiae sensu stricto identified in the urban area of Dar es Salaam. The L1014S kdr mutation was detected at elevated frequency in An gambiae s.s. in the urban area but remains sporadic in An. arabiensis specimens. Microarrays identified 416 transcripts differentially expressed in any area versus the susceptible reference strain and supported the impact of agriculture on resistance mechanisms with multiple genes encoding pesticide targets, detoxification enzymes and proteins linked to neurotransmitter activity affected. In contrast, resistance mechanisms found in the urban area appeared more specific and more related to the use of insecticides for vector control. CONCLUSIONS: Overall, this study confirmed the role of the environment in shaping insecticide resistance in mosquitoes with a major impact of agriculture activities. Results are discussed in relation to resistance mechanisms and the optimization of resistance management strategies.


Asunto(s)
Anopheles/genética , DDT/farmacología , Insectos Vectores/genética , Resistencia a los Insecticidas , Insecticidas/farmacología , Nitrilos/farmacología , Fenilcarbamatos/farmacología , Piretrinas/farmacología , Animales , Anopheles/efectos de los fármacos , Anopheles/crecimiento & desarrollo , Anopheles/parasitología , Femenino , Insectos Vectores/efectos de los fármacos , Insectos Vectores/crecimiento & desarrollo , Insectos Vectores/parasitología , Larva/efectos de los fármacos , Larva/genética , Larva/crecimiento & desarrollo , Larva/parasitología , Malaria/parasitología , Malaria/transmisión , Especificidad de la Especie , Tanzanía
8.
Tanzan J Health Res ; 16(4): 329-32, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26891523

RESUMEN

Resistance of mosquitoes to insecticides is mainly attributed to their adaptation to insecticide-based vector control interventions. Although pesticides used in agriculture have been frequently mentioned as an additional force driving the selection of resistance, only a few studies were dedicated to validate this hypothesis. The objective of this study was to investigate the effect of exposure of the malaria mosquito, Anopheles gambiae s.s. larvae for 72h to sub-lethal concentrations of the agrochemical mixture (pesticides, herbicides and fungicides). Their subsequent tolerances were measured to deltamethrin (pyrethroid), DDT (organochlorine) and bendiocarb (carbamate) currently used for vector control. The mean LC50 was determined and tolerance ratios for larvae exposed to agrochemical comparatively with unexposed larvae were calculated and expressed as fold increased tolerance. Bioassays revealed a significant increase in larval tolerance to detamethrin (1.83-2.86 fold), DDT (1.31-1.53 fold) and bendiocarb (1.14-1.19 fold) following exposure to 0.1 µM and 1 µM agrochemical mixture. The observed increased tolerance in this study is likely to be based on metabolic resistance mechanisms. Overall, this study reveals the potential of agrochemicals to increase the tolerance of mosquito larvae to chemical insecticides.


Asunto(s)
Agroquímicos/farmacología , Anopheles/efectos de los fármacos , Resistencia a los Insecticidas , Insecticidas/farmacología , Malaria/transmisión , Animales , Bioensayo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...